FDACS-P-00124



October-December 2020 Volume 59, Number 4

# TRI-OLOGY

A PUBLICATION FROM THE DIVISION OF PLANT INDUSTRY, BUREAU OF ENTOMOLOGY, NEMATOLOGY, AND PLANT PATHOLOGY Division Director, Trevor R. Smith, Ph.D.



#### BOTAN

Providing information about plants: native, exotic, protected and weedy



#### **ENTOMOLOGY**

Identifying arthropods, taxonomic research and curating collections



#### **NEMATOLOGY**

Providing certification programs and diagnoses of plant problems



#### **PLANT PATHOLOGY**

Offering plant disease diagnoses and information





### ABOUT TRI-OLOGY

The Florida Department of Agriculture and Consumer Services-Division of Plant Industry's (FDACS-DPI) Bureau of Entomology, Nematology, and Plant Pathology (ENPP), including the Botany Section, produces TRI-OLOGY four times a year, covering three months of activity in each issue.

The report includes detection activities from nursery plant inspections, routine and emergency program surveys, and requests for identification of plants and pests from the public. Samples are also occasionally sent from other states or countries for identification or diagnosis.

#### **HOW TO CITE TRI-OLOGY**

Section Editor. Year. Section Name. P.J. Anderson and G.S. Hodges (Editors). TRI-OLOGY Volume (number): page. [Date you accessed site.]

For example: S.E. Halbert. 2015. Entomology Section. P.J. Anderson and G.S. Hodges (Editors). TRI-OLOGY 54(4): 9. [Accessed 5 June 2016.]

Copies of TRI-OLOGY are kept on the FDACS website for two years. To obtain older copies, contact the FDACS-DPI Library at (352) 395-4722 or <a href="mailto:PlantIndustry@FDACS.gov">PlantIndustry@FDACS.gov</a>.

#### **ACKNOWLEDGEMENTS**

The editors would like to acknowledge the work of all those who contributed information and explanations by providing data, photographs or text, and by carefully reading early drafts.

We welcome your suggestions for improvement of TRI-OLOGY. Please feel free to contact the <u>helpline</u> with your comments at 1-888-397-1517.

Thạnk you,

Gregory Hodges, Ph.D.

Editor

Assistant Director, Division of Plant Industry

Patti J. Anderson, Ph.D. Managing Editor

Botanist, Division of Plant Industry

# **TABLE OF CONTENTS**

MIGHLIGHTS

03

Noteworthy examples from the diagnostic groups throughout the ENPP Bureau.

**Q** BOTANY

04

Quarterly activity reports from Botany and selected plant identification samples.

\*\*

**ENTOMOLOGY** 

06

Quarterly activity reports from Entomology and samples reported as new introductions or interceptions.

**6** NEMATOLOGY

09

Quarterly activity reports from Nematology and descriptions of nematodes of special interest.

PLANT PATHOLOGY

11

Quarterly activity reports from Plant Pathology and selected identified plant pest and disease samples.

**Cover Photo** 

**Ambrosiodmus lewisi Blandford, ambrosia beetle.**Photo by Kyle Schnepp, FDACS-DPI



## **HIGHLIGHTS**



**Oplismenus burmannii** (Retz.) P. Beauv. (Burmann's basketgrass, zacatillo). This weedy, annual grass can be identified by its minute whitish, antrorsely (pointing upward) scabrous awns. Other species of *Oplismenus* in North America have smooth, yellow to reddish awns and are perennials. This species usually grows in shady locations, but mats of this species can be found growing in sunny lawns.

**2** Dolichothrips indicus (Hood), Indian macaranga thrips, a new Continental USA record and new host record. This species is probably native to India, but it is now found in Barbados, Brazil, French Polynesia, Hawaii, Japan, New Caledonia and Taiwan. Dolichothrips indicus feeds on many plants, but this is the first record from the genus Tibouchina.

**3** *Ulmus parvifolia* **Jacq., Chinese elm.** In 2019, samples of soil and roots were collected from containerized *Ulmus parvifolia* cvs. Allee and Drake in Lake County, Florida, and submitted for nematode certification. Initially, nematodes were extracted from soil and roots, and species identification was performed. The nematodes *Meloidogyne arenaria*, *M. enterolobii* and *M. javanica* were found. This is the first report of Chinese elm as host of these three species in Florida.

**A** Rhizobium rhizogenes (Riker et al. 1930) Young et al. 2001 (crown gall), a new host record, was submitted on Forestieria segregata, Florida swampprivet, from a state park. Forestiera plants with galls have been submitted to the lab before; however, this is the first time the presence of the gallforming bacteria has been confirmed. The submission of young galls for analysis was key to recovering the pathogen in culture. Symptoms of crown gall caused by R. rhizogenes on Forestieria usually appear as small galls located on the terminal end of branches.



1 - Oplismenus burmannii, Burmann's basketgrass, close view of flower. Photo by Mark Garland, Atlas of Florida Plants



2 - Dolichothrips indicus, Indian macaranga thrips, adult female. Photo by Felipe Soto-Adames, FDACS-DPI



3 - Ulmus parvifolia, Chinese elm, roots with galls from nematode. Photo by Janete Brito, FDACS-DPI



4 - Rhizobium rhizogenes (crown gall) symptoms on Forestiera segregata, Florida swampprivet. Small galls on branch tips. Photo by Hector Urbina, FDACS-DPI





## **BOTANY**

Compiled by Patti J. Anderson, Ph.D. and Alex de la Paz, B.S.

This section identifies plants for the Division of Plant Industry, as well as for other governmental agencies and private individuals. The Botany Section maintains a reference herbarium with over 15,000 plant specimens and 1,400 vials of seeds.

#### **QUARTERLY ACTIVITY REPORT**

|                                                           | OCTOBER -<br>DECEMBER | 2020 - YEAR<br>TO DATE |
|-----------------------------------------------------------|-----------------------|------------------------|
| Samples Submitted by Other DPI Sections                   | 822                   | 4,214                  |
| Samples Submitted<br>for Botanical<br>Identification Only | 61                    | 476                    |
| Total Samples<br>Submitted                                | 833                   | 4,690                  |
| Specimens Added to the Herbarium                          | 197                   | 780                    |

Some of the samples submitted recently are described below.

Oplismenus burmannii (Retz.) P. Beauv. (Burmann's basketgrass, zacatillo), from a genus of 11 tropical and warm region species in the plant family, Gramineae/Poaceae. This weedy, annual grass has glabrous, prostrate culms to 60 cm long. This grass typically produces new roots at nodes where the culm is in contact with the soil. The leaves are lanceolate to ovate with undulating margins and a ciliate liqule. Leaves may be as long as 9 cm and up to 20 mm wide. This species can be identified by its minute whitish, antrorsely (pointing upward) scabrous awns. Other species of Oplismenus in North America have smooth, yellow to reddish awns and are perennials. This specimen adds another county to the list of known sites in which this pan-tropical, non-native grass is found. It usually grows in shady locations, but mats of this species can be found growing in sunny lawns. (Collier County; B2020-418; Scott Krueger; 29 September 2020.) (Davis, et al., 2006; Hall, 2019; Mabberley, 2017; Peterson et al., 1999; https:// www.zimbabweflora.co.zw/speciesdata/species.php?species id=106060 [accessed 29 December 2020].)

**2** Synsepalum dulcificum (Schumach. & Thonn.) Daniell (miracle fruit), from a genus of about 37 species native to tropical Africa, in the plant family Sapotaceae. Synsepalum dulcificum is an evergreen shrub or small tree, usually no more than 7 m tall in its native habitat and almost always shorter in cultivation. It is native to warm and wet forests and lowlands of tropical West Africa and has been introduced for cultivation throughout tropical and subtropical regions of the world. The leaves are alternate and obovate-lanceolate with entire margins, growing clustered at the end of the branchlets. The



1a - Oplismenus burmannii (Retz.) P. Beauv., Burmann's basketgrass, close view of flower.
Photo by Mark Garland, Atlas of Florida Plants



1b - Oplismenus burmannii (Retz.) P. Beauv., Burmann's basketgrass. Photo by Mark Garland, Atlas of Florida Plants



flowers are bisexual, small and borne solitary or clustered in the leaf axils. Each flower consists of four to five sepals, four to five petals, five stamens and a superior ovary with a simple style and inconspicuous stigma. The fruit is a finely pubescent, ovoid to oblong, red berry 2-2.5 cm long and 1 cm wide with one large seed surrounded by a thin layer of fleshy pulp.

The miracle fruit was first documented by French explorer Chevalier des Marchais in 1725 while on an excursion to West Africa. In 1827, it was given the name Bumelia dulcifica Schumach. & Thonn., now considered a synonym of the accepted name Synsepalum dulcificum (Schumach. & Thonn.) Daniell, published in 1852. This species was introduced to the United States by the late Dr. David Fairchild, who made a total of four introductions in Miami, Florida, consisting of both plants and seeds, between 1929 and 1939. Unfortunately, many of the early introductions planted in the alkaline, limestonebased soils of Miami died quickly, because this species prefers acidic soils. William Francis Whitman, Jr., is credited with being the first to successfully grow the plant in the United States in 1952 after planting seeds in peat moss-filled containers, then moving them to acidic sandy soils, where they reached a height of 7 feet. Miracle fruit has not yet been documented to escape from cultivation in Florida, although Whitman, (1994) states, "Seeds, distributed by birds and children, germinated freely on a volunteer basis in the acid soil wherever conditions were favorable." This species has been documented in cultivation from Brevard, Hendry, Highlands, Indian River, Lee, Leon, Manatee, Miami-Dade and Sarasota counties in Florida, mostly in botanical gardens, greenhouses and residential landscapes. The sample submitted for identification this reporting period was collected from a cultivated plant with mature fruit, growing in a residential landscape in Avon Park.

The common name "miracle fruit" is based on the peculiar nature of the fruit to make sour foods taste sweet, if it is consumed beforehand. This interesting sensation is caused by miraculin, a glycosylated protein, acting on the sweet taste receptors of the tongue. This chemical binds to the receptors and converts sour stimuli to sweet, with the effect lasting up to one hour, although the intensity declines over time. The fruit is also a rich source of vitamin C, leucine, flavonols and anthocyanins. For centuries, indigenous peoples of tropical West Africa have used this species as a food and a medicine. In the United States, most of the focus has been on miraculin's potential as a natural food sweetener with the ability to make unsweetened foods seem sweet, without the usual caloric cost, which could help diabetics and others avoid excessive sugar intake. (Highlands County; B2020-470; Clarisa M. Copeland; 17 December 2020.) (Xingwei, et



2 - Synsepalum dulcificum, miracle fruit, leaves and flower. Photo from Shutterstock

al., 2016; http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:789924-1 [accessed 29 December 2020]; https://www.growables.org/information/TropicalFruit/MiracleFruitArcRFC.htm [accessed 29 December 2020].)

#### REFERENCES

**Davis, S.B., Judd, W.S. and Perkins K.D. (2006).** Noteworthy collections: Florida. *Castanea* 71: 333-334.

**Hall, D. W. (2019).** *Grasses of Florida*. University Press of Florida. Gainesville, Florida.

**Mabberley, D.J. (2017).** *Mabberley's plant-book: a portable dictionary of plants, their classification and uses* (4th edition). Cambridge University Press. New York, New York.

Peterson, P.M., Terrell, E.E., Uebel, E.G., Davis, C.A., Scholz, H. and Soreno R.J. (1999). Oplismenus hirtellus subspecies undulatifolius, a new record for North America. Castanea 64: 201-202.

Whitman, William F. (1994). Miracle Fruit. Archives of the Rare Fruit Council of Australia. March 1994. Web Publication: 22 February 2015. Retrieved December 29, 2020, from <a href="https://www.growables.org/information/TropicalFruit/MiracleFruitArcRFC.htm">https://www.growables.org/information/TropicalFruit/MiracleFruitArcRFC.htm</a>.

Xingwei, C., Abdullah, T. L., Taheri, S., Abdullah, N. A., and Hassan, S. A. (2016). Flower Ontogenesis and Fruit Development of *Synsepalum dulcificum*. *HortScience*, 51: 697-702. doi:10.21273/hortsci.51.6.697.

# **@ BOTANY IDENTIFICATION TABLE**

The following table provides information about **new county** records submitted in the current volume's time period. The table is organized by collector name. The full version with more complete data is downloadable as a <u>PDF</u> or an <u>Excel</u> spreadsheet organized by collector name, except new county records are listed first.

| NEW<br>RECORD | COLLECTOR NAME   | COUNTY  | SAMPLE<br>NUMBER | COLLECTION DATE | PLANT NAME           |
|---------------|------------------|---------|------------------|-----------------|----------------------|
| <b>⊕</b>      | Scott D. Krueger | Collier | B2020-418        | 9/29/2020       | Oplismenus burmannii |



# **ENTOMOLOGY**

Compiled by Susan E. Halbert, Ph.D.

This section provides the division's plant protection specialists and other customers with accurate identifications of arthropods. The entomology section also builds and maintains the arthropod reference and research collection (the Florida State Collection of Arthropods with over 10 million specimens) and investigates the biology, biological control and taxonomy of arthropods.

#### **QUARTERLY ACTIVITY REPORT**

|                      | OCTOBER -<br>DECEMBER | 2020 - YEAR<br>TO DATE |
|----------------------|-----------------------|------------------------|
| Samples Submitted    | 1,115                 | 4,960                  |
| Lots Identified      | 1,473                 | 10,304                 |
| Specimens Identified | 19,275                | 86,015                 |

# **1** Dolichothrips indicus (Hood), Indian macaranga thrips, a new Continental USA record and new host record.

This is the first record for *Dolichothrips indicus* in the continental United States. This species is probably native to India, but it is now found in Barbados, Brazil, French Polynesia, Hawaii, Japan, New Caledonia and Taiwan. *Dolichothrips indicus* feeds on many plants, but this is the first record from the genus *Tibouchina* in the plant family Melastomataceae. Other plant hosts previously recorded in the literature include avocado, mango, cotton and members of the genera *Acalypha, Ailanthus, Cassia, Diospyros, Hibiscus, Macaranga, Mallotus, Melastoma and Murraya*. Despite the wide range of hosts, this thrips is not a plant pest; rather, it appears to be a pollinator. (Lake County; E2020-4837; Mary Sellers; 13 December 2020.) (Dr. Felipe Soto-Adames.)

**2** Emargo sp., a figitid wasp, a new Continental USA record. This genus is pantropical. These wasps are thought to be parasitoids of fly larvae hiding in ant nests. The center of diversity appears to be East Africa with a spectacular radiation in Madagascar. Emargo appears to be quite rare everywhere on Earth, except Madagascar. (Palm Beach County; E2020-4646; Jake Farnum; 15 July 2019.) (Dr. Matthew L. Buffington, USDA, Systematic Entomology Laboratory, Beltsville, MD.)

Ambrosiodmus lewisi Blandford, an ambrosia beetle, a new Florida State record. Ambrosiodmus lewisi is an Asian ambrosia beetle new to Florida, also found in Alabama and Pennsylvania. This species is not collected often and is characterized by its large size (3.6–4.0 mm). In North America, these beetles have been trapped in Lindgren funnels or reared from Quercus velutina. Although it is rarely collected, A. lewisi could be established in the eastern United States. This species is economically important in certain areas of its native range in Southeast Asia (Hoebeke, 1991). (Jackson County; E2020-4696; Robert Leahy, USDA; 1 December 2020.) (Krystal Ashman.)



1 - Dolichothrips indicus, Indian macaranga thrips, adult female. Photo by Felipe Soto-Adames, FDACS-DPI



3 - Ambrosiodmus lewisi Blandford, ambrosia beetle. Photo by Kyle Schnepp, FDACS-DPI

#### **REFERENCES**

**Hoebeke, R. E. (1991).** An Asian ambrosia beetle, *Ambrosiodmus lewisi*, new to North America (Coleoptera: Scolytidae). *Proceedings of the Entomological Society of Washington* 93: 420–424.

# **Q ENTOMOLOGY SPECIMEN REPORT**

Following are tables with entries for records of new hosts or new geographical areas for samples identified in the current volume's time period as well as samples of special interest. An abbreviated table, with all the new records, but less detail about them, is presented in the body of this web page and another version with more complete data is downloadable as a <a href="PDF">PDF</a> or an <a href="Excel spreadsheet">Excel</a> spreadsheet.

The tables are organized alphabetically by plant host if the specimen has a plant host. Some arthropod specimens are not collected on plants and are not necessarily plant pests. In the table below, those entries that have no plant information included are organized by arthropod name.

| PLANT SPECIES          | PLANT COMMON<br>NAME                      | ARTHROPOD GENUS<br>AND SPECIES | ARTHROPOD COMMON NAME               | COLLECTOR                                                                       | RECORD                                                   |
|------------------------|-------------------------------------------|--------------------------------|-------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|
| Abies fraseri          | Fraser's fir, southern balsam fir         | Cuerna striata                 | sharpshooter                        | Milton Lara                                                                     | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Milton Lara                                                                     | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Milton Lara                                                                     | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Milton Lara                                                                     | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Milton Lara                                                                     | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Milton Lara                                                                     | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Milton Lara                                                                     | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Juan Aleman-Martinez,<br>Rosie Dulzaides                                        | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Juan Aleman-Martinez,<br>Rosie Dulzaides                                        | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Milton Lara                                                                     | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Milton Lara                                                                     | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Milton Lara                                                                     | REGULATORY SIGNIFICANT                                   |
| Abies fraseri          | Fraser's fir, southern balsam fir         | Fiorinia externa               | armored scale                       | Tavia Gordon                                                                    | REGULATORY SIGNIFICANT                                   |
| Acer negundo           | boxelder                                  | Salina tristani                | Tristan's green grass<br>springtail | Julieta Brambila                                                                | NEW FLORIDA COUNTY<br>RECORD                             |
| Aristida purpurascens  | arrowfeather threeawn                     | Antoninoides nortoni           | mealybug                            | Kyle Schnepp                                                                    | NEW FLORIDA HOST<br>RECORD                               |
| Canna sp.              |                                           | Sitobion avenae                | English grain aphid                 | Nina Klinedinst and<br>Beverly Colmant                                          | NEW FLORIDA HOST<br>RECORD                               |
| Cannabis sativa        | hemp                                      | Ceroplastes rusci              | fig wax scale                       | Sara Harper                                                                     | NEW FLORIDA HOST<br>RECORD                               |
| Cannabis sativa        | hemp                                      | Corythucha gossypii            | cotton lace bug                     | Sallie Simmons                                                                  | NEW FLORIDA HOST<br>RECORD                               |
| Cannabis sativa        | hemp                                      | Halticus brachtatus            | garden fleahopper                   | Sam Hart                                                                        | NEW FLORIDA HOST<br>RECORD                               |
| Cannabis sativa        | hemp                                      | Phenacoccus madeirensis        | Madeira mealybug                    | Lance Osborne,<br>Muhammad Z. 'Zee'<br>Ahmed, Gabrielle Ouwinga,<br>Lily Deeter | NEW FLORIDA HOST<br>RECORD                               |
| Capsicum annuum        | pepper                                    | Bactericera cockerelli         | potato psyllid                      | Alexander Tasi                                                                  | REGULATORY SIGNIFICANT                                   |
| Capsicum annuum        | pepper                                    | Bactericera cockerelli         | potato psyllid                      | Logan Cutts, Dyrana Russell                                                     | REGULATORY SIGNIFICANT                                   |
| Capsicum annuum        | pepper                                    | Euxesta eluta                  | corn silk fly                       | Sara Furgeson                                                                   | NEW FLORIDA COUNTY<br>RECORD                             |
| Chrysopsis scabrella   | coastalplain goldenaster                  | Eriococcus euphorbiae          | eriococcid                          | Gabrielle Ouwinga, Kyle<br>Schnepp, Lily Deeter, Alex<br>de la Paz              | NEW FLORIDA HOST<br>RECORD                               |
| Coccoloba uvifera      | seagrape                                  | Metalectra nigrior             | fungus moth                         | Charles King                                                                    | NEW FLORIDA COUNTY<br>RECORD                             |
| Cola sp.               |                                           | Balanogastris kolae            | kolnut weevil                       | Gregg Farina & K-9                                                              | REGULATORY SIGNIFICANT                                   |
| Euphorbia hyssopifolia | hyssopleaf sandmat                        | Phenacoccus solani             | solanum mealybug                    | Karen Relish                                                                    | NEW FLORIDA HOST<br>RECORD                               |
| <i>lxora</i> sp.       |                                           | Asiothrixus antidesmae         | ixora whitefly                      | Carol Wyatt-Evens                                                               | NEW FLORIDA COUNTY<br>RECORD; QUARANTINABLE<br>PEST      |
| Lactuca sativa         | lettuce, romaine lettuce, leaf<br>lettuce | Nasonovia ribisnigri           | currant-lettuce aphid               | Logan Cutts, Dyrana Russell                                                     | REGULATORY SIGNIFICANT                                   |
| Liatris tenuifolia     | shortleaf gayfeather                      | Rhizaspidiotus dearnessi       | dearness scale                      | Gabrielle Ouwinga, Kyle<br>Schnepp, Lily Deeter, Alex<br>de la Paz              | NEW FLORIDA COUNTY<br>RECORD; NEW FLORIDA<br>HOST RECORD |
| Litchi chinensis       | litchi, leechee                           | Adraneothrips sp.              | thrips                              | Samuel Bolton, Matt Brodie,<br>Jake Farnum                                      | NEW FLORIDA COUNTY<br>RECORD                             |



| PLANT SPECIES         | PLANT COMMON<br>NAME                               | ARTHROPOD GENUS<br>AND SPECIES | ARTHROPOD COMMON NAME            | COLLECTOR                                                     | RECORD                        |  |
|-----------------------|----------------------------------------------------|--------------------------------|----------------------------------|---------------------------------------------------------------|-------------------------------|--|
| Litchi chinensis      | litchi, leechee                                    | Thysanofiorinia leei           | leei litchi scale                | Juan Amador                                                   | NEW FLORIDA COUNTY<br>RECORD  |  |
| Malus sp.             |                                                    | Vanduzea segmentata            | treehopper                       | Sam Hart                                                      | NEW FLORIDA HOST<br>RECORD    |  |
| Mangifera indica      | mango                                              | Cyphomyia marginata            | soldier fly                      | Robert Rocky                                                  | NEW FLORIDA COUNTY<br>RECORD  |  |
| Musa sp.              |                                                    | Pseudococcus n.sp.             | mealybug                         | Dawn Cermak, Alexander<br>Tasi                                | REGULATORY SIGNIFICANT        |  |
| Ocimum sp.            |                                                    | Calcomyza hyptidis             | leaf miner                       | Patti Anderson                                                | NEW FLORIDA COUNTY<br>RECORD  |  |
| Phaseolus vulgaris    | snapbean, stringbean, pole<br>bean, foot-long bean | Megalurothrips usitatus        | Asian bean thrips                | Craig Frey                                                    | NEW FLORIDA COUNTY<br>RECORD  |  |
| Platanus occidentalis | sycamore                                           | Lepidocyrtus sp.               | springtail                       | Julieta Brambila                                              | NEW TO SCIENCE RECORD         |  |
| Portulaca pilosa      | pink purslane                                      | Hypogeococcus pungens          | mealybug                         | Muhammad Z. 'Zee'<br>Ahmed, Gabrielle<br>Ouwinga, Lily Deeter | NEW FLORIDA COUNTY<br>RECORD  |  |
| Pseudotsuga menziesii | Douglas fir                                        | Fiorinia externa               | armored scale                    | Mary Sellers                                                  | REGULATORY SIGNIFICANT        |  |
| Sansevieria sp.       |                                                    | Taeniothrips eucharii          | oriental lily flower thrips      | Employee                                                      | NEW FLORIDA COUNTY<br>RECORD  |  |
| Setaria parviflora    | yellow bristlegrass                                | Aspidiella sacchari            | sugarcane scale                  | Kyle Schnepp                                                  | NEW FLORIDA HOST<br>RECORD    |  |
| Solanum lycopersicum  | garden tomato, tomate,<br>jitomate                 | Polyamia obtecta               | leafhopper                       | Robert Leahy                                                  | NEW FLORIDA COUNTY<br>RECORD  |  |
| Tibouchina sp.        |                                                    | Dolichothrips indicus          | Indian macarangthrips            | Mary Sellers                                                  | NEW USA CONTINENTAL<br>RECORD |  |
|                       |                                                    | Ambrosiodmus lewisi            | ambrosibeetle                    | Robert Leahy                                                  | NEW FLORIDA STATE<br>RECORD   |  |
|                       |                                                    | Calx cubensis                  | common cuban calx                | Douglas Restom-Gaskill                                        | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Clerada apicicornis            | blood-feeding lygaeid bug        | Vince Golia                                                   | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Corixidea major                | jumping ground bug               | Julien Beuzelin                                               | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Cryphula trimaculata           | dirt-colored seedbug             | Felipe Soto-Adames, Julieta<br>Brambila                       | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Emargo sp.                     | parasitic wasp                   | Jake Farnum                                                   | NEW USA CONTINENTAL<br>RECORD |  |
|                       |                                                    | Macrochlamys indica            | horntail snail                   | Scott Krueger                                                 | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Macrochlamys indica            | horntail snail                   | Nichole Bushue & K-9                                          | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Mitrapsylla cubana             | psyllid                          | Robert Leahy                                                  | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Mitrapsylla cubana             | psyllid                          | Douglas Restom-Gaskill                                        | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Rheumatobates minutus          | water strider                    | Alexander Tasi                                                | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Salina tristani                | Tristan's green grass springtail | Douglas Restom-Gaskill                                        | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Seira brasiliana               | Brazilian seira                  | Douglas Restom-Gaskill                                        | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Semium hirtum                  | plant bug                        | Kenneth Branch, Robinson<br>Lawrence, James Bouie             | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Thione championi               | beetle                           | Douglas Restom-Gaskill                                        | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Toxophora amphitea             | bee fly                          | Jeanie Frechette                                              | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Xyleborinus octiesdentatus     | ambrosia beetle                  | Mary Jane Echols                                              | NEW FLORIDA COUNTY<br>RECORD  |  |
|                       |                                                    | Xyleborinus octiesdentatus     | ambrosia beetle                  | Robert Leahy                                                  | NEW FLORIDA COUNTY<br>RECORD  |  |





## **NEMATOLOGY**

Compiled by Janete A. Brito, Ph.D., Matthew R. Moore, M.S., Xue Ruimin, B.S., Cheryl G. Roberts, B.S., and Lynn A. Combee, B.S.

This section analyzes soil and plant samples for nematodes, conducts pest detection surveys and provides diagnoses of plant problems, in addition to completing identification of plant parasitic nematodes involved in regulatory and certification programs. State of Florida statutes and rules mandate the predominant regulatory activities of the section. Analyses of plant and soil samples include those from in-state programs, plant shipments originating in Florida destined for other states and countries, as well as samples intercepted in Florida from outside the United States.

#### **QUARTERLY ACTIVITY REPORT**

|                               | OCTOBER -<br>DECEMBER | 2020 - YEAR<br>TO DATE |
|-------------------------------|-----------------------|------------------------|
| Morphological Identifications | 2,708                 | 12,479                 |
| Molecular Identifications *   | 115                   | 997                    |
| Total Identifications         | 2,823                 | 13,476                 |

<sup>\*</sup> The majority of these analyses involved root-knot nematode species.

#### **Nematode of Special Interest**

In 2019, samples of soil and roots were collected from containerized Ulmus parvifolia cvs. Jacq. Allee and Drake in Lake County, Florida, and submitted for nematode certification. Initially, nematodes were extracted from soil and roots, and species identification was performed using FDACS-DPI's standard protocol for identifying Meloidogyne enterolobii Yang and Eisenback, 1981, a COI-based qPCR assay (Kiewnick, et al., 2015; Braun-Kiewnick, et al., 2016) with slight modifications (Moore, et al., 2020). Initial results revealed the presence of M. enterolobii in some, but not all, soil samples collected from *U. parvifolia*. To determine whether *U. parvifolia*, rather than weeds growing together in the pots with these elms, is indeed a host of Meloidogyne species including M. enterolobii, additional soil and root samples (n = 3) were collected directly from the rhizosphere of *U. parvifolia*. These samples were designated as N20-110, N20-113 (both from *U. parvifolia* cv. Allee) and N20-115 (from *U. parvifolia* cv. Drake). Round galls, resembling those commonly induced by M. enterolobii, were observed on secondary and tertiary roots of *U. parvifolia* cv. Allee in one of the samples; whereas, in the other *U. parvifolia* samples, the root galls were less rounded and more like those induced by other Meloidogyne spp. Meloidogyne species were identified using isozyme analyses, two qPCR assays, morphology of the perineal patterns and concatenated NADH5/COXII sequences. Samples N20-110-2B, N20-110-3B and N20-110-6B were positively identified as M. enterolobii from both qPCR assays. COXII sequences from the N20-110 samples were 100 percent BLASTn matches to previously published M. enterolobii data. Sequences from the isolates N20-115-1A, N20-115-6A, N20-115-10A, N20-115-16B, N20-113-1B, N20-113-14B and N20-113-18B were 100 percent matches to M.



1a - Ulmus parvifolia Jacq, Chinese elm cultivars Allee and Drake. Containerized plants in a nursery. Photo by Janete Brito, FDACS-DPI



1b - Ulmus parvifolia Jacq., Chinese elm 'Allee' with root galling (arrow) induced by M. enterolobii. Photo by Janete Brito, FDACS-DPI



javanica (Janssen, et al., 2016). Isolates N20-115-1B, N20-115-2B and N20-115-3B were 100 percent matches to *M. arenaria*. Isozyme analyses (esterase and malate dehydrogenase) and morphology of perineal patterns were consistent with those reported for *M. enterolobii* (VS1-S1; N1a) isolated singly from *U. parvifolia* cv. Allee (N20-110). *Meloidogyne javanica* (J3; N1) was also found singly on this same cultivar (N20-113), and both *M. arenaria* (A2; N1) and *M. javanica* (J3; N1) were identified as mixed species infecting *U. parvifolia* cv. Drake (N20-115). To our knowledge, this is the first report of Chinese elm as host of *M. arenaria*, *M. enterolobii* and *M. javanica* in Florida.

#### **REFERENCES**

Braun-Kiewnick, A., Viaene, N., Folcher, L., Ollivier, F., Anthoine, G., Niere, B., Sapp, M., van de Vossenberg, B., Toktay, H. and Kiewnick, S. (2016). Assessment of a new qPCR tool for the detection and identification of the root-knot nematode *Meloidogyne enterolobii* by an international test performance study. *European Journal of Plant Pathology* 144: 97-108.

#### **COLLECTORS**

Collectors submitting five or more samples processed for nematological analysis during October-December 2020.

| COLLECTOR<br>NAME    | SAMPLES<br>PROCESSED |
|----------------------|----------------------|
| Alford, Brian        | 7                    |
| Anderson, James      | 9                    |
| Andrews, Ethan       | 5                    |
| Bentley, Michael     | 11                   |
| Blanco, Rogelio      | 165                  |
| Boyar, Jillian       | 136                  |
| Burgos, Frank        | 206                  |
| Carbon, Peter        | 6                    |
| Clanton, Keith       | 142                  |
| Cutts, Logan         | 10                   |
| Dean, Randall        | 6                    |
| Landress, Craig      | 12                   |
| Lebron-Rivera, Karen | 6                    |
| Rojas, Eric          | 87                   |
| Spriggs, Charles     | 130                  |
| Steinkamp, Katherine | 3                    |
| Taylor, Donald       | 10                   |
| Terrell, Mark        | 38                   |
| Ureta-Cooper, Laura  | 6                    |
| Violet, Larry        | 8                    |
| Webb, Gary           | 7                    |
| Yates, Johnny        | 9                    |
| Youngblood, Susan    | 14                   |
| Yu, Wangze           | 15                   |

Janssen, T., Karssen, G., Verhaeven, M., Coyne, D. and Bert, W. (2016). Mitochondrial coding genome analysis of tropical root-knot nematodes (*Meloidogyne*) supports haplotype-based diagnostics and reveals evidence of recent reticulate evolution. *Scientific Reports* 6(22591): 1-13.

# Kiewnick, S., Frey, J.E., and Braun-Kiewnick, A. (2015). Development and validation of LNA (locked nucleic acid)based quantitative real-time PCR assays for detection and identification of the root-knot nematode *Meloidogyne*enterolobii in complex DNA backgrounds. *Phytopathology*105: 1245-1249.

Moore, M.R., Brito, J.A., Qiu, S., Roberts, C.G., and Combee, L.A. (2020). First report of *Meloidogyne enterolobii* infecting Japanese blueberry tree (*Elaeocarpus decipiens*) in Florida, USA. *Journal of Nematology* 52: 1-3. DOI: https://doi.org/10.21307/jofnem-2020-005.

#### SAMPLES FOR MORPHOLOGICAL ANALYSIS

|                                                                         | OCTOBER -<br>DECEMBER | 2020 - YEAR<br>TO DATE |
|-------------------------------------------------------------------------|-----------------------|------------------------|
| Multistate<br>Certification for<br>National and<br>International Export | 1,436                 | 6,769                  |
| California<br>Certification                                             | 352                   | 1,815                  |
| Pre-movement<br>(Citrus Nursery<br>Certification)                       | 92                    | 244                    |
| Site or Pit Approval<br>(Citrus Nursery and<br>Other Certifications)    | 36                    | 155                    |

#### OTHER PURPOSES

|                                      | OCTOBER -<br>DECEMBER | 2020 - YEAR<br>TO DATE |
|--------------------------------------|-----------------------|------------------------|
| Identifications<br>(Other Organisms) | 0                     | 0                      |
| Nematology<br>Investigation          | 0                     | 0                      |
| Plant Problems                       | 31                    | 161                    |
| Intrastate Survey,<br>Random         | 227                   | 779                    |
| Total                                | 2,174                 | 9,923                  |

#### SAMPLES FOR MOLECULAR ANALYSIS

|                     | OCTOBER -<br>DECEMBER | 2020 - YEAR<br>TO DATE |
|---------------------|-----------------------|------------------------|
| Regulatory Purposes | 115                   | 997                    |
| Other Purposes      | 0                     | 0                      |
| Identifications     | 0                     | 0                      |
| Surveys             | 0                     | 0                      |
| Total               | 115                   | 2,589                  |





# **PLANT PATHOLOGY**

Compiled by Hector Urbina, Ph.D., Jodi L. Hansen, M.S., Taylor E. Smith, B.S., Kishore Dey, Ph.D., Callie M. Jones and Maria C. Velez Climent, M.S.

The Plant Pathology section provides plant disease diagnostic services for the department. The agency-wide goal of protecting the flora of Florida very often begins with accurate diagnoses of plant problems. Management recommendations are offered where appropriate and available. Our plant pathologists are dedicated to keeping informed about endemic plant diseases along with those diseases and disorders active outside Florida in order to be prepared for potential introductions of new pathogens to our area.

**Rhizobium rhizogenes** (Riker et al. 1930) Young et al. 2001 (crown gall), a new host record, was submitted on Forestieria segregata, Florida swampprivet, from a state park. Crown galls are cancer-like tumors on plant crowns, roots or branches. Symptoms of crown gall caused by *R. rhizogenes* (formerly known as Agrobacterium tumefaciens) on Forestieria usually appear as small galls located on the terminal end of branches. Forestiera plants with galls have been submitted to the lab before; however, this is the first time the presence of the gall-forming bacteria has been confirmed. The submission of young galls for analysis was key to recovering the pathogen in culture.

When plants in a nursery are infected with crown gall, DPI imposes an automatic quarantine because the disease can become a serious problem quickly. Galls can interrupt nutrient and water flow, leading to symptoms of wilting and yellowing. In general, when large galls encircle the main stem of young trees, the disease can be fatal. The disease caused by this bacterium is incurable. *Rhizobium rhizogenes* spreads easily on unsanitized tools and affects the health of plants. Pruners should be sanitized after pruning symptomatic plants to prevent possible transfer of the disease to other hosts in the landscape. If a gall is noticed on a newly installed landscape plant, the plant and its surrounding soil should be removed and discarded. (Miami-Dade County; P-103548; Jake M. Farnum, USDA/CAPS, and Alex Stauber, Florida State Parks; 18 March 2020).



1 - Rhizobium rhizogenes (Riker et al. 1930) Young et al. 2001 (crown gall) symptoms on Forestiera segregata, Florida swampprivet. Small galls on branch tips.
Photo by Hector Urbina, FDACS-DPI

# **Q PLANT PATHOLOGY IDENTIFICATION TABLE**

The following table provides information about samples identified between October - December 2020. The table is organized alphabetically by plant species, with new records listed on the right.

| PLANT<br>SPECIES              | PLANT<br>COMMON<br>NAME               | CAUSAL<br>AGENT                                      | DISEASE<br>NAME                           | LOCATION<br>TYPE            | SPECIMEN<br>NUMBER | COUNTY         | COLLECTOR                                                                    | DATE       | NEW<br>RECORDS  |
|-------------------------------|---------------------------------------|------------------------------------------------------|-------------------------------------------|-----------------------------|--------------------|----------------|------------------------------------------------------------------------------|------------|-----------------|
| Dischidia<br>pectinoides      | dischidia; ant<br>plant               | Tospovirus<br>Tomato spotted<br>wilt virus           | tomato<br>spotted wilt<br>tospovirus      | nursery                     | 105413             | Lake           | Mary C. Sellers                                                              | 9/21/2020  | host            |
| Forestiera<br>segregata       | Florida<br>swampprivet                | Rhizobium<br>radiobacter                             | crown gall                                | agricultural<br>survey site | 103548             | Miami-<br>Dade | Jake M.<br>Farnum                                                            | 3/18/2020  | host            |
| Genipa<br>clusiifolia         | seven-year<br>apple                   | Septophoma chromolaenae                              | fungus                                    | nursery                     | 104592             | Miami-<br>Dade | Suhayla E.<br>Carrasquilla                                                   | 7/8/2020   | county,<br>host |
| Hemianthus<br>callitrichoides | dwarf baby<br>tears                   | Athelia rolfsii                                      | southern<br>blight                        | nursery                     | 105494             | Hillsborough   | Jose L. Llano                                                                | 9/30/2020  | host            |
| Hibiscus rosa-<br>sinensis    | hibiscus                              | Cilevirus CiLV-<br>C2H                               | hibiscus-<br>infecting<br>cilevirus       | residential                 | 105326             | Sarasota       | Juan Amador                                                                  | 9/9/2020   | county          |
| Hydrangea sp.                 | hydrangea                             | Carlavirus<br>Hydrangea<br>chlorotic mottle<br>virus | hydrangea<br>chlorotic<br>mottle<br>virus | nursery                     | 105785             | Martin         | Leann M.<br>West, Cheryl A.<br>Jones, Matt M.<br>Miller, Charles<br>Gonzales | 11/9/2020  | state           |
| Jasminum<br>sambac            | Arabian<br>jasmine                    | Pelarspovirus<br>Jasmine virus H                     | virus                                     | residential                 | 105764             | Miami-<br>Dade | Nora Garcia                                                                  | 10/30/2020 | county          |
| Orthosiphon<br>aristatus      | cat's-whiskers;<br>Java tea           | Cucumovirus<br>cucumber mosiac<br>virus              | cucumber<br>mosiac<br>virus               | residence                   | 105424             | Alachua        | Maria C. Velez-<br>Climent                                                   | 9/23/2020  | host            |
| Psidium<br>cattleianum        | cattley guava;<br>strawberry<br>guava | Nemania<br>abortiva                                  | wood-<br>decay<br>fungus                  | roadside                    | 105558             | Palm Beach     | Sydney<br>Jimenez                                                            | 10/6/2020  | host            |
| Smilax sp.                    | greenbriar                            | Dichorhavirus<br>orchid fleck virus                  | orchid fleck<br>virus                     | business<br>landscape       | 105490             | Alachua        | Kishore Dey,<br>Maria C. Velez-<br>Climent                                   | 8/18/2020  | host            |
| Spinach<br>oleracea           | spinach                               | Pythium<br>aphanidermatum                            | root and<br>crown rot                     | nursery                     | 105633             | Palm Beach     | nursery<br>employee                                                          | 10/20/2020 | host            |

# **QUARTERLY ACTIVITY REPORT**

|                                | OCTOBER -<br>DECEMBER | 2020 - YEAR<br>TO DATE |
|--------------------------------|-----------------------|------------------------|
| Budwood                        | 0                     | 0                      |
| Citrus black spot              | 26                    | 374                    |
| Citrus canker                  | 38                    | 303                    |
| Citrus greening / HLB          | 3,627                 | 8,587                  |
| Honeybees                      | 0                     | 3                      |
| Interdictions                  | 9                     | 89                     |
| Laurel wilt                    | 1                     | 4                      |
| Pathology, general             | 702                   | 3,027                  |
| Soil                           | 8                     | 90                     |
| Sudden oak death               | 0                     | 1                      |
| Sweet orange scab-like disease | 2                     | 2                      |
| Texas phoenix palm decline     | 4                     | 44                     |
| Water                          | 0                     | 0                      |
| Totals                         | 4,418                 | 12,530                 |





# FROM THE EDITOR

By Patti J. Anderson

Inquiring minds want to know...about the Division of Plant Industry Herbarium.

On December 1, 2020, the DPI herbarium (internationally recognized by the acronym PIHG) added accession number 15,000. Each mounted plant specimen is given an accession number as it is added to the herbarium collection. This milestone marks an increasing rate of acquisition for the herbarium. Accession number 10,000 was added on January 9, 2008. Dates of accession were not recorded on early data systems, but the herbarium was established in 1964.

You might be interested in a bit of DPI herbarium history. The Botany Section is much younger than the division as a whole. In the early 1960s, Dr. Kenneth R. Langdon, a DPI nematologist who had expert knowledge of native and cultivated plants, began to receive more and more questions concerning botany, and in 1963, he was put in charge of a new Office of Systematic Botany. In 1964, Dr. Langdon established the DPI Herbarium to provide specimens for use in identifying and verifying plant samples. Plant identifications are the primary service provided by the Botany Section. The botanists identify or verify scientific names of plant specimens for the Entomology, Plant Pathology and Nematology sections as well as plant samples sent directly to the Botany Section from DPI, other agencies and the general public. To assist in these identifications, the botanists collect native and cultivated plants for the DPI herbarium. It took the herbarium 44 years to go from zero to 10,000 specimens; then 12 years to reach 15,000 specimens. We look forward to expanding the collection in the future while maintaining its quality and usefulness.

Dr. Langdon retired in 1991 and Dr. Nancy C. Coile took his place. Dr. Coile retired in 2002 and was followed by Mr. Mark Garland. Dr. Richard Weaver took over the section in 2004 and then retired in 2010. Both Dr. Langdon and Dr. Weaver are now deceased. Today, the Botany Section is headed by Dr. Patti Anderson who assumed this position in 2010.



Chrysopsis gossypina Accession # 15,000 Photo by Alex de la Paz, FDACS-DPI



**Lobelia glandulosa Accession** # 10,000 Photo by Jeffrey Lotz, FDACS-DPI



**Torreya taxifolia, an endangered species, Accession # 169** Photo by Georgeanne Paris, FDACS-DPI



Botanist Alex de la Paz adding Accession #15,000 to the herbarium shelves Photo by Patti Anderson, FDACS-DPI



FDACS.gov/TRI-OLOGY

1-888-397-1517

Florida Department of Agriculture and Consumer Services Division of Plant Industry 1911 SW 34th St. Gainesville, FL 32608-1201